
COP 4710: Database Systems (DDBMS) Page 1 Mark Llewellyn ©

COP 4710: Database Systems
Fall 2007

CHAPTER 22 – Parallel and Distributed
Database Systems

COP 4710: Database Systems
Fall 2007

CHAPTER 22 – Parallel and Distributed
Database Systems

School of Electrical Engineering and Computer Science
University of Central Florida

Instructor : Dr. Mark Llewellyn
markl@cs.ucf.edu
HEC 236, 407-823-2790
http://www.cs.ucf.edu/courses/cop4710/fall2007

COP 4710: Database Systems (DDBMS) Page 2 Mark Llewellyn ©

Introduction to Parallel and Distributed
Database Systems

• So far in this course, we have considered centralized DBMSs
in which all of the data is maintained at a single site. We
further assumed that processing individual transactions was
essentially sequential.

• One of the most important trends in databases is the
increased use of parallel evaluation techniques (parallel
DBMS) and data distribution (distributed DBMS).

• We will focus primarily on distributed database management
systems, but we will examine some parallel query execution
strategies.

COP 4710: Database Systems (DDBMS) Page 3 Mark Llewellyn ©

Parallel Database Systems

• A parallel database system seeks to improve performance of
the database through the parallelization of various operations
of the DBMS.

• Parallelization can occur:

– in the loading of data

– building/searching indices

– query evaluation

• Although it is common for data to be distributed in such a
system, the distribution is governed solely by performance
considerations.

COP 4710: Database Systems (DDBMS) Page 4 Mark Llewellyn ©

Parallel Database System Architectures

• Three main architectures have been proposed for building
parallel DBMSs.

• In a shared-memory system, multiple CPUs are attached to
an interconnection network and can access a common region
of main memory.

• In a shared-disk system, each CPU has a private memory and
direct access to all disks through an interconnection network.

• In a shared-nothing system, each CPU has local main
memory and disk space, but no two CPUs can access the
same storage area; all communication between CPUs is
through a network connection.

COP 4710: Database Systems (DDBMS) Page 5 Mark Llewellyn ©

Parallel Database System Architectures (cont.)

Interconnection Network

P P P

Memory

disk

Memory Memory

disk disk

Shared Nothing

P P P

Interconnection Network

Global Shared Memory

disk disk disk

Shared Memory

Memory Memory Memory

P P P

Interconnection Network

disk disk disk

Shared Disk

The best architecture
for parallel DBMSs

COP 4710: Database Systems (DDBMS) Page 6 Mark Llewellyn ©

Parallel Database System Architectures (cont.)

• The basic problem with the shared-memory and shared-disk architectures
is interference.

• As more CPUs are added, existing CPUs are slowed down because of the
increased contention for memory accesses and network bandwidth.

• It has been shown that:

– An average of 1% slowdown per additional CPU limits the maximum speed-
up to a factor of 37.

– Adding additional CPUs actually slows down the system.

– A system with 1000 CPUs is only 4% as effective as a single CPU.

• These observations motivated the development of the shared-nothing
architecture for large parallel database systems.

COP 4710: Database Systems (DDBMS) Page 7 Mark Llewellyn ©

Parallel Database System Architectures (cont.)

• The shared-nothing architecture requires more extensive
reorganization of the DBMS code, but it has been shown to
provide a linear speed-up and linear scale-up.

• Linear speed-up occurs when the time required by an operation
decreases in proportion to the increase in the number of CPUs and
disks.

• Linear scale-up occurs when the performance level is sustained if
the number of CPUs and disks are increased in proportion to the
amount of data.

• As a result, ever-more-powerful parallel database systems can be
constructed by taking advantage of the rapidly improving
performance for single-CPU systems and connecting as many
CPUs as desired.

COP 4710: Database Systems (DDBMS) Page 8 Mark Llewellyn ©

Parallel Database System Architectures (cont.)

of CPUs # of CPUs, database size

of

 tr
an

sa
ct

io
ns

/s
ec

on
d

of

 tr
an

sa
ct

io
ns

/s
ec

on
d

Linear
speed-up

(ideal)

Sublinear
speed-up

Linear
scale-up
(ideal)

Sublinear
scale-up

Speed-up Scale-up

COP 4710: Database Systems (DDBMS) Page 9 Mark Llewellyn ©

Distributed Database Systems

• In a distributed database system, data is physically stored
across several sites, and each site is typically managed by a
DBMS capable of running independent of the other sites.

• The location of the data items and the degree of autonomy of
the individual sites have a significant impact on all aspects of
the system, including query processing and optimization,
concurrency control, and recovery.

• In contrast to parallel database systems, the distribution of
data is governed by factors such as local ownership and
increased availability, in addition to performance related
issues.

COP 4710: Database Systems (DDBMS) Page 10 Mark Llewellyn ©

Distributed Database Systems (cont.)

• Distributed database systems have been around since the mid-
1980s. As you might expect, a variety of distributed database
options exist. The diagram below shows the basic distributed
database environments.

Distributed database environments

Homogeneous Heterogeneous

Autonomous Non-autonomous Systems Gateways

Full DBMS functionality Partial-Multidatabase

Federated Unfederated

Loose integration Tight integration

COP 4710: Database Systems (DDBMS) Page 11 Mark Llewellyn ©

Distributed Database Systems (cont.)

Homogeneous – same DBMS is used at each site.
– Autonomous – each DBMS works independently, passing messages back and

forth to share data updates.

– Nonautonomous – a central, or master, DBMS coordinates database access and
updates across the sites.

Heterogeneous – potentially different DBMSs are used at each site.
– Systems – support some or all of the functionality of one logical database.

• Full DBMS functionality – supports all of the functionality of a distributed database.

• Partial-Multidatabase – supports some of the features of a distributed database.
– Federated – supports local databases for unique data requests.

» Loose integration – many schemas exist: each local database and each local DBMS must
communicate with all local schemas.

» Tight integration – one global schema exists that defines all the data across all local
databases.

– Unfederated – requires all access to go through a central coordinating module.

– Gateways – simple paths are created to other databases, without the benefits of
one logical database.

COP 4710: Database Systems (DDBMS) Page 12 Mark Llewellyn ©

A Homogeneous Distributed Database

• A typical homogeneous distributed database environment is
illustrated on the following page.

• This environment is typically defined by the following
characteristics:

– Data are distributed across all the nodes.

– The same DBMS is used at each location.

– All data are managed by the distributed DBMS. There is no
exclusively local data.

– All users access the database through one global schema or database
definition.

– The global schema is simply the union of all the local database
schemas.

COP 4710: Database Systems (DDBMS) Page 13 Mark Llewellyn ©

A Homogeneous Distributed Database System

Distributed DBMS

Global
schema

Node

DBMS
Software

1

DBMS
Software

DBMS
Software

DBMS
Software

2 3 n

Global
user

Global
user

COP 4710: Database Systems (DDBMS) Page 14 Mark Llewellyn ©

A Heterogeneous Distributed Database

• It is difficult in most organizations to force a homogeneous environment,
yet heterogeneous environments are much more difficult to manage.

• As the diagram on page 10 illustrates, there are many variations of
heterogeneous distributed database environments, however; a typical
heterogeneous distributed database environment is defined by the
following characteristics:

– Data are distributed across all the nodes.

– Different DBMSs may used at each location.

– Some users require only local access to databases, which can be
accomplished using only the local DBMS and schema.

– A global schema exists, which allows local users to access remote data.

COP 4710: Database Systems (DDBMS) Page 15 Mark Llewellyn ©

A Heterogeneous Distributed Database System

Distributed DBMS

Global
schema

DBMS-1 DBMS-2 DBMS-3 DBMS-n

Global
user

Global
user

Local
user

Local
user

COP 4710: Database Systems (DDBMS) Page 16 Mark Llewellyn ©

Objectives of Distributed Database Systems

• The fundamental principle of distributed databases gives rise to a
set of twelve fundamental objectives. These objectives were
defined by C.J. Date in 1990.

The fundamental principle of distributed database

To the user, a distributed database system should look exactly like a
nondistributed database system.

1. Local autonomy

2. No reliance on a central site

3. Continuous operation

4. Location transparency

5. Fragmentation transparency

6. Replication transparency

7. Distributed query processing

8. Distributed transaction management

9. Hardware independence

10. Operating system independence

11. Network transparency

12. DBMS independence

COP 4710: Database Systems (DDBMS) Page 17 Mark Llewellyn ©

1. Local Autonomy

• The sites in a distributed system should be autonomous to the
maximum extent possible (some situations arise where site X
must relinquish some control to some other site Y).

• Local autonomy means that all operations at a given site X
are controlled by that site: no site X should depend on some
site Y for its successful operation, otherwise if site Y is
down, then X cannot run even if there is nothing wrong with
site X itself.

• Local autonomy implies that local data is locally owned and
managed, with local accountability.

COP 4710: Database Systems (DDBMS) Page 18 Mark Llewellyn ©

2. No Reliance on a Central Site

• Local autonomy implies that all sites must be treated as
equals.

• There must not be any reliance on a central “master” site for
some central service, such as transaction management or
query processing.

• Central “master” sites represent a potential bottleneck but
more importantly, if the central site goes down, the whole
system would be down.

• Note: if local autonomy is achieved, this objective is
automatically satisfied.

COP 4710: Database Systems (DDBMS) Page 19 Mark Llewellyn ©

3. Continuous Operation

• An advantage of distributed systems in general is that they
can provide greater reliability and greater availability.

– Reliability is the probability that the system is up and running
at any given moment. Reliability is improved in distributed
systems because they can continue to operate (possibly at some
reduced level of performance) when faced with the failure of
some individual component, such as an individual site.

– Availability is the probability that the system is up and running
throughout a specified period. As with reliability, distributed
systems improve availability partly for the same reason, but
also because of data replication.

COP 4710: Database Systems (DDBMS) Page 20 Mark Llewellyn ©

4. Location Transparency

• The basic idea of location transparency is that users should
not have to know where the data is physically stored, but
should be able to behave – at least from a logical standpoint
– as if the data were all stored at their own local site.

• Location transparency is desirable because it simplifies
application programs and end-user activities; in particular, it
allows data to migrate from site to site without invalidating
any of those programs or activities.

• Location transparency allows data to migrate around the
network in response to changing performance requirements.

COP 4710: Database Systems (DDBMS) Page 21 Mark Llewellyn ©

5. Fragmentation Transparency

• We’ll examine fragmentation more closely later, but for now
we’ll assume that a system that supports data fragmentation
allows a database (or its components) to be divided into
pieces or fragments for physical storage purposes and that
these fragments can be stored at physically different sites.

• Fragmentation transparency allows users to behave – from a
logical standpoint – as if the data were not fragmented.

• Fragmentation transparency allows data to be refragmented
at any time (and fragments to be redistributed at any time) in
response to changing performance requirements.

COP 4710: Database Systems (DDBMS) Page 22 Mark Llewellyn ©

6. Replication Transparency

• We’ll examine replication more closely later, but for now
we’ll assume that a system that supports data replication
allows a database (or its components) to be represented in
storage by many distinct copies or replicas, stored at
physically different sites.

• Replication transparency allows users to behave – from a
logical standpoint – as if the data were not replicated.

• Replication transparency allows replicas to be created or
destroyed at any time in response to changing performance
requirements.

COP 4710: Database Systems (DDBMS) Page 23 Mark Llewellyn ©

7. Distributed Query Processing

• In a distributed database system, query processing can
involve both local as well as global queries.

• Local queries are executed against only local data while
global queries will involve non-local data.

• Query optimization is even more important in a distributed
environment than it is in a centralized environment. Since
many different possibilities exist for moving data around a
network in response to processing a query, it is crucially
important that an efficient execution strategy be found.

COP 4710: Database Systems (DDBMS) Page 24 Mark Llewellyn ©

8. Distributed Transaction Management

• There are two major aspects to transaction management,
recovery and concurrency, and both require extended
treatment in a distributed environment.

• In a distributed system, a single transaction can involve the
execution of code at many sites; in particular it can involve
updates at many sites. Each transaction is therefore said to
consist of several agents, where an agent is the process
performed on behalf of a given transaction at a given site.

• The system must know when two agents are part of the same
transactions; for example, two agents of the same transaction
must obviously not be allowed to deadlock with each other!

COP 4710: Database Systems (DDBMS) Page 25 Mark Llewellyn ©

8. Distributed Transaction Management (cont.)

On the recovery side

• In order to ensure that a given transaction is atomic (all or nothing)
in the distributed environment, the system must ensure that the set
of agents for a given transaction either all commit in unison or all
roll back in unison.

– Note: A two-phase commit protocol (which is similar to the two-
phase locking protocol we saw under centralized transaction
management) works in a centralized environment, but is not
applicable in a distributed environment.

On the concurrency side

• Concurrency control in most distributed systems is based on
locking, just as it is in nondistributed systems. Some systems use
multi-version controls, but locking is the most popular technique.

COP 4710: Database Systems (DDBMS) Page 26 Mark Llewellyn ©

9. Hardware Independence

• The heading pretty much says it all for this objective.

• Real-world computer installations typically involve a
multiplicity of different machines and hardware which must
be configured to integrate the data on all of the systems to
present the user with a “single-system image”.

• The same DBMS must run on different hardware platforms,
and furthermore to have those different machines all
participate as equal partners in the distributed system.

COP 4710: Database Systems (DDBMS) Page 27 Mark Llewellyn ©

10. Operating System Independence

• This objective is a corollary of the previous one.

• It is obviously desirable to be able to run the same DBMS on
different operating systems on either different or the same
hardware.

COP 4710: Database Systems (DDBMS) Page 28 Mark Llewellyn ©

11. Network Independence

• The system should be able to support many disparate sites,
with disparate hardware and disparate operating systems.

• It is also desirable to support a variety of disparate
communication networks.

COP 4710: Database Systems (DDBMS) Page 29 Mark Llewellyn ©

12. DBMS Independence

• The system should be able to relax any requirements for
strict homogeneity amongst the DBMSs.

• Realize that all this requirement really dictates is that the
DBMS instances at different sites all support the same
interface. They do not all need to be copies of the same
DBMS software,

COP 4710: Database Systems (DDBMS) Page 30 Mark Llewellyn ©

Synchronous v. Asynchronous DDB
• A significant trade-off in designing a DDB is whether to use

synchronous or asynchronous distributed technology.

• In synchronous DDBs, all data across the network are
continuously kept up-to-date so that a user at any site can
access data anywhere on the network at any time and get the
same answer.

• In asynchronous DDBs, replicated copies at different sites
are not updated continuously but commonly at set intervals
in time and thus there is some propagation delay when
replicas may not be synchronized. More sophisticated
strategies are required to ensure the correct level of data
integrity and consistency across the sites.

COP 4710: Database Systems (DDBMS) Page 31 Mark Llewellyn ©

Options for Distributing A Database
• There are four basic strategies that can be employed for distributing a

database:

1. Data replication

– Full

– Partial

2. Horizontal fragmentation

3. Vertical fragmentation

4. Combinations of those above.

– Replicated horizontal fragments

– Replicated vertical fragments

– Horizontal/vertical fragments

COP 4710: Database Systems (DDBMS) Page 32 Mark Llewellyn ©

Data Replication
• Data replication has become an increasingly popular option

for data distribution. This is in part due to the fault tolerance
this technique provides.

• Data replication can use either synchronous or asynchronous
technologies, although asynchronous technologies are more
common in replication only environments.

• Full replication places a replica at each site in the network.

• Partial replication places a replica at some of the sites (at
least two sites maintain replicas) in the network.

COP 4710: Database Systems (DDBMS) Page 33 Mark Llewellyn ©

Data Replication (cont.)

• Data replication has 5 main advantages:

1. Reliability – A replica is available at another site if one site
containing a replica should fail.

2. Fast response – Each site with a replica can process queries locally.

3. Avoid complicated distributed transaction integrity routines –
Replicas are typically refreshed at periodic intervals, so most forms of
replication are used when some relaxation of synchronization across
the replicas is acceptable.

4. Node decoupling – Each transaction can proceed without
coordination across the network. In place of real-time
synchronization of updates, a behind-the-scenes process coordinates
all replicas.

5. Reduce network traffic at prime time – Updating typically happens
during prime business hours, when network traffic is highest and
demands for rapid response greatest. Replication, with delayed
updating, shifts this traffic to non-prime time.

COP 4710: Database Systems (DDBMS) Page 34 Mark Llewellyn ©

Data Replication (cont.)

• Data replication has 2 primary disadvantages:

1. Storage requirements – Each site that has a full replica
must have the same storage capacity that would be
required if the data were stored centrally. Each replica
requires storage space as well as processing time when
updates to the replicas are processed.

2. Complexity and cost of updating – Whenever a base
relation is updated, it must (eventually) be updated at each
site that holds a replica. Synchronizing updating in near
real-time requires careful coordination (as we’ll see later).

COP 4710: Database Systems (DDBMS) Page 35 Mark Llewellyn ©

Data Replication (cont.)

• Because of the advantages and disadvantages just outlined, data
replication is favored where most process requests are read-only
(queries) and where the data are relatively static, as in catalogs,
telephone directories, train schedules, and so on.

• Replication is used for “noncollaborative data”, where one
location does not need a real-time update of data maintained by
other locations.

• In these applications, the replicas need eventually to be
synchronized, as quickly as practical, but real-time or near real-
time constraints do not apply.

• Replication is not a viable approach for online applications such as
airline reservation systems, ATM transactions, or applications
where each user needs data about the same, nonsharable resource.

COP 4710: Database Systems (DDBMS) Page 36 Mark Llewellyn ©

Updating Replicas – Snapshot Replication
• Several different schemes exist for updating replicas.

• Application such as data warehousing/data mining, or decision
support systems – which do not require current up-to-the minute data
– are typically supported by simple table copying or periodic
snapshots.

• Assuming that multiple sites are updating the same data, this basically
works as follows:

– First, updates from all replicated sites are periodically collected at a master or
primary site, where all the updates are made to form a consolidated record of
all changes. This snapshot log, is a table of row identifiers for the records to
go into the snapshot.

– Then a read-only snapshot is sent to each site where there is a copy (it is
often said that these other sites “subscribe” to the data owned at the primary
site).

– This is called a full refresh of the database.

COP 4710: Database Systems (DDBMS) Page 37 Mark Llewellyn ©

Updating Replicas – Snapshot Replication (cont.)

• An alternative method is that only those pages that have changes
since the last snapshot are sent. In this case, a snapshot log for each
replicated table is joined with the associated base table to form the set
of changed rows which are sent to the replicated sites.

• This is called a differential or incremental refresh.

• A more advanced form of snapshot replication allows shared
ownership of the data. Shared updates introduces significant issues
for managing update conflicts across sites.

– For example, what if tellers at two branch banks try to update a
customer’s address simultaneously? Asynchronous technology would
allow such a conflict to exist temporarily, which is fine as long as the
update is not critical to business operations, provided that such a conflict
can be detected and resolved before a business problem arises.

COP 4710: Database Systems (DDBMS) Page 38 Mark Llewellyn ©

Updating Replicas – Snapshot Replication (cont.)

• The cost to perform a snapshot refresh depends on whether the
snapshot is simple or complex.

• A simple snapshot is one that references either a portion or all of a
single table.

• A complex snapshot involves multiple tables, usually from
transactions that involve joins.

• Typically, DDS a simple snapshot can be refreshed using differential
refresh whereas complex snapshots require more time-consuming full
refresh.

COP 4710: Database Systems (DDBMS) Page 39 Mark Llewellyn ©

Updating Replicas – Near Real-Time Replication (cont.)

• For situations that require near real-time refresh of replicas, store and
forward messages for each completed transaction can be broadcast
across the network informing all sites to update data as soon as
possible, without forcing a confirmation to the originating site
(confirmations are required in coordinated commit protocols), before
the database at the originating site is updated.

• A common method for generating these messages is through the use
of triggers. A trigger is stored at each site so that when a piece of
replicated data is updated, the trigger executes corresponding update
commands against remote replicas.

• Triggers allow each update event to be handled individually and
transparently to programs and users.

• If a site is off-line or busy, the update message is held in a queue.

COP 4710: Database Systems (DDBMS) Page 40 Mark Llewellyn ©

Updating Replicas – Push – Pull Strategies
• The mechanisms we’ve seen so far for updating replicas are all examples

of push strategies.

• Push strategies for updating replicas always originate at the site where the
original update occurred (the source). The update is then “pushed” out
onto the network for other sites (the targets) to update their replicas.

• In pull strategies, the target, not the source, controls when a local replica
is updated.

• With pull strategies, the local database determines when it needs to be
refreshed, and requests a snapshot or the emptying of a message queue.

• Pull strategies have the advantage that the local site controls when it
needs and can handle the updates. Thus, synchronization is less
disruptive and occurs only when needed by each site, not when a central
master site thinks it is best to update.

COP 4710: Database Systems (DDBMS) Page 41 Mark Llewellyn ©

Database Integrity With Replication
• For both periodic and near real-time replication, consistency across the

distributed, replicated database is compromised.

• Whether delayed or near real-time, the DBMS managing replicated
database still must ensure the integrity of the database.

• Decision support systems permit synchronization on a table-by-table
basis, whereas near real-time application require transaction-by-
transaction synchronization.

• One of the main difficulties of handling updates with replicated databases
depends on the number of sites at which updates may occur.

– In a single-updater environments, updates are usually handled by periodically
sending read-only snapshots to the non-updater sites. This effectively
batches multiple updates together.

– In multiple-updater environments, the main issue is data collision. Data
collisions arise when independent updating sites each attempt to update the
same data at the same time.

COP 4710: Database Systems (DDBMS) Page 42 Mark Llewellyn ©

When To Use Replication
• Whether replication is a viable design for a distributed database system

depends on several factors:

1. Data timeliness – Applications that can tolerate out-of-date data (whether this be a
few seconds or a few hours) are better candidates for replication.

2. DBMS capabilities – An important DBMS capability is whether it will support a
query that references data from more than one site. If not, then replication is a
better candidate than the partitioning schemes (we’re going to look at these next).

3. Performance implications – Replication means that each site must be periodically
refreshed. During refreshment, the distributed site may be very busy handling a
large volume of updates. If refreshment occurs via triggers, refreshment could
come at an inopportune time for a given site, i.e., it is busy doing local work.

4. Heterogeneity in the network – Replication can be complicated if different site use
different OSs and DBMSs. Mapping changes from one site to n other sites may
imply n different routines to translate changes from the source to the n target sites.

5. Communications network capabilities – Transmission speeds and capacity in the
network may prohibit frequent, complete refresh of large tables.

COP 4710: Database Systems (DDBMS) Page 43 Mark Llewellyn ©

Options for Distributing A Database
• There are four basic strategies that can be employed for distributing a

database:

1. Data replication

– Full

– Partial

2. Horizontal fragmentation

3. Vertical fragmentation

4. Combinations of those above.

– Replicated horizontal fragments

– Replicated vertical fragments

– Horizontal/vertical fragments

Covered in previous section of notes

COP 4710: Database Systems (DDBMS) Page 44 Mark Llewellyn ©

Horizontal Fragmentation
• With horizontal fragmentation, some of the rows of a relation

(table) are put into a base relation at one site, and other rows
of the relation are put into a base relation at another site.

– Note: there is no overlapping of the rows across the various
sites – this is pure fragmentation, if there were overlapping
rows, we would also have replication, which falls into the last
category of distributed options. This would be a more general
approach, although it is also quite common.

• Horizontal fragmentation results from applying selection
conditions (relational algebra selections) to relations.

COP 4710: Database Systems (DDBMS) Page 45 Mark Llewellyn ©

Horizontal Fragmentation (cont.)

Oviedo

Oviedo

Longwood

Maitland

Oviedo

Branch

Tawni

Didi

Michael

Debbie

Kristi

Customer Name

Initial table R

Horizontal fragments based on:
δ(Branch = ‘Oviedo’)(R)

Fragment #1

Fragment #2

Oviedo

Oviedo

Oviedo

Branch

Tawni

Didi

Kristi

Customer Name

Longwood

Maitland

Branch

Michael

Debbie

Customer Name

COP 4710: Database Systems (DDBMS) Page 46 Mark Llewellyn ©

Horizontal Fragmentation (cont.)

• Horizontal fragmentation has four major advantages:

1. Efficiency – Data can be stored close to where they are used
and separate from other data used by other users or
applications.

2. Local optimization – Data can be stored to optimize
performance for local access rather than global access.

3. Security – Data not relevant to usage at a particular site is not
made available at that site.

4. Ease of querying – Combining data across horizontal fragments
is easy because the rows are simply merged by unions across
the fragments.

COP 4710: Database Systems (DDBMS) Page 47 Mark Llewellyn ©

Horizontal Fragmentation (cont.)

• Horizontal fragmentation has two primary disadvantages:

1. Inconsistent access speed – When data from several fragments
are required, the access time can be significantly different from
local-only data access.

2. Backup vulnerability – Since the data is not replicated, when
data at one site becomes inaccessible or damaged, usage cannot
switch to another site where a copy exists; data may be lost if
proper backup is not performed at each site.

• Horizontal fragmentation is typically used when an
organizational function is distributed, but each site is
concerned with only a subset of the entity instances
(often geographically based).

COP 4710: Database Systems (DDBMS) Page 48 Mark Llewellyn ©

Vertical Fragmentation

• With vertical fragmentation, some of the columns of
a relation (table) are put into a base relation at one
site, and other columns of the relation are put into a
base relation at another site.

– Note: there must be a common domain stored at
each site so that the original table can be
reconstructed.

• Vertical fragmentation results from applying
projection operations (relational algebra projection)
to relations.

COP 4710: Database Systems (DDBMS) Page 49 Mark Llewellyn ©

Vertical Fragmentation (cont.)

18,000

50,000

4,000

23,000

15,000

Balance

Oviedo

Oviedo

Longwood

Maitland

Oviedo

Branch

Tawni

Didi

Michael

Debbie

Kristi

Customer Name

Initial table R

Vertical fragment based on: π(name, branch)(R)

Oviedo

Oviedo

Longwood

Maitland

Oviedo

Branch

Tawni

Didi

Michael

Debbie

Kristi

Customer Name

Vertical fragment based on: π(name, balance)(R)

18,000

50,000

4,000

23,000

15,000

Balance

Tawni

Didi

Michael

Debbie

Kristi

Customer Name

COP 4710: Database Systems (DDBMS) Page 50 Mark Llewellyn ©

Combinations of Distribution Strategies
• To complicate matters even further, there are an almost

unlimited number of combinations of distribution strategies
based upon the previous cases.

• Some data may be stored centrally while others are
replicated. Both horizontal and vertical fragments can be
replicated.

COP 4710: Database Systems (DDBMS) Page 51 Mark Llewellyn ©

Horizontal/Vertical Fragmentation

18,000

50,000

4,000

23,000

15,000

Balance

Oviedo

Oviedo

Longwood

Maitland

Oviedo

Branch

Tawni

Didi

Michael

Debbie

Kristi

Customer Name

Initial table R

Fragment based on: δ(branch = ‘Oviedo’)(π(name, branch)(R))

Oviedo

Oviedo

Oviedo

Branch

Tawni

Didi

Kristi

Customer Name

Fragment based on: δ(branch <> ‘Oviedo’)(π(name, branch)(R))

Longwood

Maitland

Branch

Michael

Debbie

Customer Name

Fragment based on: δ(balance >15000)(R)

18,000

50,000

23,000

Balance

Oviedo

Oviedo

Maitland

Branch

Tawni

Didi

Debbie

Customer Name Fragment based on: δ(name = ‘Krisit’)(π(name, balance)(R))

15,000

Balance

Kristi

Customer Name

COP 4710: Database Systems (DDBMS) Page 52 Mark Llewellyn ©

Selecting a Distribution Strategy
• A distributed database can be organized in five unique ways:

1. Totally centralized – all data resides at one location accessed from
many geographically distributed sites.

2. Partially or totally replicated (snapshot) – data is either partially or
totally replicated across geographically distributed sites, with each
replica periodically updated with snapshots.

3. Partially or totally replicated (real-time synchronization) – data is
either partially or totally replicated across geographically distributed
sites, with near real-time synchronization.

4. Fragmented (integrated) – data is into segments at different
geographically distributed sites, but still within one logical database
and one distributed DBMS.

5. Fragmented (nonintegrated) – data is fragmented into independent,
non integrated segments spanning multiple computer systems and
database software.

COP 4710: Database Systems (DDBMS) Page 53 Mark Llewellyn ©

Summary of Distributed Design Strategies

COP 4710: Database Systems (DDBMS) Page 54 Mark Llewellyn ©

Distributed DBMS
• To have a distributed database, there must be a database

management system that coordinates the access to the data at
the various sites.

• Such a system is called a distributed DBMS.

• Although each site may have a DBMS managing the local
database at that site, a distributed DBMS must perform the
following functions for the distributed database.

COP 4710: Database Systems (DDBMS) Page 55 Mark Llewellyn ©

Functions of a Distributed DBMS

• Locate data with a distributed data dictionary.
• Determine location from which to retrieve data and

process query components.
• DBMS translation between nodes with different local

DBMSs (using middleware).
• Data consistency (via multiphase commit protocols).
• Global primary key control.
• Provide scalability.
• Security, concurrency, query optimization, failure

recovery.

COP 4710: Database Systems (DDBMS) Page 56 Mark Llewellyn ©

Distributed DBMS Architecture

COP 4710: Database Systems (DDBMS) Page 57 Mark Llewellyn ©

Local vs. Global Transactions
• A local transaction is one for which the required data are stored

entirely at the local site.
– The distributed DBMS passes the request to the local DBMS.

• A global transaction references data at one or more non-local
sites.
– The distributed DBMS routes the request to other sites as necessary.

The distributed DBMSs at the participating sites exchange messages as
needed to coordinate the processing of the transaction until it is
completed (or aborted, if necessary).

COP 4710: Database Systems (DDBMS) Page 58 Mark Llewellyn ©

Steps to Process a Local Transaction

1. Application makes request to distributed DBMS

2. Distributed DBMS checks distributed data
repository for location of data. Finds that it is local.

3. Distributed DBMS sends request to local DBMS

4. Local DBMS processes request

5. Local DBMS sends results to application

COP 4710: Database Systems (DDBMS) Page 59 Mark Llewellyn ©

Local transaction – all
data stored locally

1

3

4

5

2

Processing a Local Transaction

COP 4710: Database Systems (DDBMS) Page 60 Mark Llewellyn ©

Steps to Process a Global Transaction
1. Application makes request to distributed DBMS

2. Distributed DBMS checks distributed data repository for location
of data. Finds that it is remote

3. Distributed DBMS routes request to remote site

4. Distributed DBMS at remote site translates request for its local
DBMS if necessary, and sends request to local DBMS

5. Local DBMS at remote site processes request

6. Local DBMS at remote site sends results to distributed DBMS at
remote site

7. Remote distributed DBMS sends results back to originating site

8. Distributed DBMS at originating site sends results to application

COP 4710: Database Systems (DDBMS) Page 61 Mark Llewellyn ©

Global transaction – some
data is at remote site(s)

1

2

4

5

6

3

7

8

Processing a Global Transaction

COP 4710: Database Systems (DDBMS) Page 62 Mark Llewellyn ©

Distributed DBMS Transparency Objectives
• Location Transparency

– User/application does not need to know where data resides

• Replication Transparency
– User/application does not need to know about duplication

• Failure Transparency
– Either all or none of the actions of a transaction are committed
– Each site has a transaction manager

• Logs transactions and before and after images
• Concurrency control scheme to ensure data integrity

– Requires special commit protocol

COP 4710: Database Systems (DDBMS) Page 63 Mark Llewellyn ©

Two-Phase Commit

• Prepare Phase
– Coordinator receives a commit request

– Coordinator instructs all resource managers to get
ready to “go either way” on the transaction. Each
resource manager writes all updates from that
transaction to its own physical log

– Coordinator receives replies from all resource
managers. If all are ok, it writes commit to its own
log; if not then it writes rollback to its log

COP 4710: Database Systems (DDBMS) Page 64 Mark Llewellyn ©

Two-Phase Commit (cont.)

• Commit Phase
– Coordinator then informs each resource manager of its

decision and broadcasts a message to either commit or
rollback (abort). If the message is commit, then each
resource manager transfers the update from its log to its
database

– A failure during the commit phase puts a transaction “in
limbo.” This has to be tested for and handled with timeouts
or polling

COP 4710: Database Systems (DDBMS) Page 65 Mark Llewellyn ©

Concurrency Control

Concurrency Transparency

– Design goal for distributed database

• Timestamping

– Concurrency control mechanism

– Alternative to locks in distributed databases

COP 4710: Database Systems (DDBMS) Page 66 Mark Llewellyn ©

Query Optimization
• In a query involving a multi-site join and, possibly, a distributed

database with replicated files, the distributed DBMS must decide
where to access the data and how to proceed with the join.
Three step process:

1 Query decomposition - rewritten and simplified

2 Data localization - query fragmented so that fragments
reference data at only one site

3 Global optimization -
• Order in which to execute query fragments

• Data movement between sites

• Where parts of the query will be executed

COP 4710: Database Systems (DDBMS) Page 67 Mark Llewellyn ©

Distributed Query Processing
• As we’ve just seen (global vs. local transactions), with

distributed databases, the response to a query may require the
DDBMS to assemble data from several different sites
(remember though that location transparency will make the
user unaware of this fact).

• A major decision for the DDBMS is how to process a query.
How the query will be processed is affected primarily by two
factors:

1. How the user formulates the query (as we saw in the centralized case)
and how it can be transformed by the DDBMS.

2. Intelligence of the DDBMS in developing a sensible plan of
execution (distributed optimization).

COP 4710: Database Systems (DDBMS) Page 68 Mark Llewellyn ©

Distributed Query Processing – Example
• Consider the simplified version of our supplier/parts database as shown below:

suppliers (s#, city) [located at site A, contains 10,000 tuples]

parts (p#, color) [located at site B, contains 100,000 tuples]

shipments (s#, p#, qty) [located at site A, contains 1,000,000 tuples]

Assumptions
– Each tuple is 100 bytes.

– There are exactly 10 red parts.

– The query is: List the supplier numbers for suppliers in Orlando who ship a red part.

– There are 100,000 tuples in the shipments relation that involve shipments from suppliers in
Orlando.

– Computation time at any site is negligible compared to communication time.

– Network transfer rate is 10,000 bytes/sec.

– Access delay = 1 second (time to send a message – not a tuple from one site to another).

– T = total communication time = total access delay + (total data volume / data rate)
= (# messages sent x 1 sec/message) + (total # of bytes sent / 10,000)

COP 4710: Database Systems (DDBMS) Page 69 Mark Llewellyn ©

Distributed Query Processing – Example (cont.)

Strategy #1
• Move entire parts relation to site A and process query at site

A.

– T1 = 1 + (100,000 x 100)/10,000 ≈ 1000 sec = 16.7 minutes

Strategy #2

• Move supplier and shipment relations to site B and
process the query at site B.

– T2 = 2 + ((10,000 + 1,000,000) x 100)/10,0000 = 10,100 sec =
2.8 hours

COP 4710: Database Systems (DDBMS) Page 70 Mark Llewellyn ©

Distributed Query Processing – Example (cont.)

Strategy #3
• Join suppliers and shipments relations at site A, select tuples from the join for

which the city is Orlando, and then, for each of those tuples in turn, check site B
to see if the indicated part is red. Each check requires 2 messages, a query, and a
response. Transmission time for these messages is small compared to the access
delay. There will be 100,000 tuples in the join for which the supplier is located in
Orlando.

– T3 = (100,000 tuples to check) x (2) x (1 sec/message) = 200,000 sec ≈ 55
hours = 2.3 days

Strategy #4

• Select tuples from the parts relation at site B for which the color is red,
and then, for each of these tuples in turn, check at site A to see if there
exists a shipment of the part from an Orlando supplier. Again, each
check requires two messages.

– T4 = (10 red parts) x (2 messages each) x (1 sec/message) = 20 sec

COP 4710: Database Systems (DDBMS) Page 71 Mark Llewellyn ©

Distributed Query Processing – Example (cont.)

Strategy #5
• Join suppliers and shipments relations at site A, select tuples from the

join for which the city is Orlando, and then, project only the s# and p#
attributes and move this “qualified” relation to site B where the query
processing will be completed.

– T5 = (1 + (100,000 tuples for Orlando) x (100 bytes/tuple)/10,000
bytes/second ≈ 1000 sec = 16.7 minutes

Strategy #6

• Select tuples from the parts relation at site B for which the
color is red, then move this result to site A to complete the
query processing.

– T4 = 1 + (10 red parts x (100 bytes/tuple) / 10,000 ≈ 1 sec

COP 4710: Database Systems (DDBMS) Page 72 Mark Llewellyn ©

Distributed Query Processing – Example (cont.)

Summary

≈1 secondSelect red parts from parts table at site B, move these
tuples to site A for processing.6

5

4

3

2

1

2.3 daysJoin suppliers and shipments at site A, check selected
rows at site B.

16.7 minutesMove parts table to site A, process query at site A.

16.7 minutesJoin suppliers and parts at site A, move “qualified”
rows to site B for processing.

20 secondsSelect red parts from parts tables at site B, for these
tuples check at site A for a shipment of this part.

2.8 hoursMove suppliers and shipments tables to site B, process
query at site B.

TimeStrategy

COP 4710: Database Systems (DDBMS) Page 73 Mark Llewellyn ©

Distributed Query Transformation

Horizontal fragmentation example
• Suppose we have the shipments table horizontally fragmented as

follows:

– shipments = SPJ1 U SPJ2 where

SPJ1 = σ(p# = ‘P1’)(shipments) and SPJ2 = σ(p# ≠ ‘P1’)(shipments)

– assume that SPJ1 is located at site1 and SPJ2 is located at site 2.

• A user at some site (assume its is neither site 1 or site 2) wants the
answer to the query “list the supplier numbers for those suppliers who
ship part P1” and issues the query expression:
πs#(σ(p#=‘P1’)(shipments) to determine the results.

• Remember that the user is unaware of the fragmentation of the
shipments relation.

COP 4710: Database Systems (DDBMS) Page 74 Mark Llewellyn ©

Distributed Query Transformation (cont.)

Horizontal fragmentation example (cont.)

• Since shipments is defined as shipments = SPJ1 U SPJ2 the query
will be transformed into: πs#(σ(p#=‘P1’)(SPJ1 U SPJ2).

• The query optimizer will initially transform the expression above
into: [πs#(σ(p#=‘P1’)(SPJ1)] U [πs#(σ(p#=‘P1’)(SPJ2)].

• Further optimization can be done since the system can determine
that SPJ2 is defined as: SPJ2 = σ(p# ≠ ‘P1’)(shipments). Due to this
definition, the sub-expression involving SPJ2 does not need to be
evaluated as it will not contribute any values to the result set.

• Further since SPJ1 is defined as: SPJ1 = σ(p# = ‘P1’)(shipments), the
query can be further simplified to: πs#(SPJ1).

COP 4710: Database Systems (DDBMS) Page 75 Mark Llewellyn ©

Distributed Query Transformation (cont.)

Oviedo

Oviedo

Longwood

Maitland

Oviedo

Branch

Tawni

Didi

Michael

Debbie

Kristi

Customer Name

Initial table R

Horizontal fragments based on:
σ(Branch = ‘Oviedo’)(R)

Fragment #1

Fragment #2

Oviedo

Oviedo

Oviedo

Branch

Tawni

Didi

Kristi

Customer Name

Longwood

Maitland

Branch

Michael

Debbie

Customer Name

Consider queries such as:

(1) List customer names at branch
in Oviedo.

(2) List customer names at
branches not in Oviedo.

(3) List customer names at any
branch.

COP 4710: Database Systems (DDBMS) Page 76 Mark Llewellyn ©

Distributed Query Transformation

Vertical fragmentation example
• Suppose we have the shipments table horizontally fragmented as

follows:

– shipments = SPJ1 U SPJ2 where

SPJ1 = σ(p# = ‘P1’)(shipments) and SPJ2 = σ(p# ≠ ‘P1’)(shipments)

– assume that SPJ1 is located at site1 and SPJ2 is located at site 2.

• A user at some site (assume its is neither site 1 or site 2) wants the
answer to the query “list the supplier numbers for those suppliers who
ship part P1” and issues the query expression:
πs#(σ(p#=‘P1’)(shipments) to determine the results.

• Remember that the user is unaware of the fragmentation of the
shipments relation.

COP 4710: Database Systems (DDBMS) Page 77 Mark Llewellyn ©

Distributed Query Transformation (cont.)

18,000

50,000

4,000

23,000

15,000

Balance

Oviedo

Oviedo

Longwood

Maitland

Oviedo

Branch

Tawni

Didi

Michael

Debbie

Kristi

Customer Name

Initial table R

VF1: π(name, branch)(R)

Oviedo

Oviedo

Longwood

Maitland

Oviedo

Branch

Tawni

Didi

Michael

Debbie

Kristi

Customer Name

VF2: π(name, balance)(R)

18,000

50,000

4,000

23,000

15,000

Balance

Tawni

Didi

Michael

Debbie

Kristi

Customer Name

Vertical fragmentation example

Query: List customer names in Oviedo with balances >= 15,000

Initial query expression: πcustomer name(σ (balance >= 15000 and branc = ‘Oviedo’)(R))

Query will be transformed into:

πcustomer name[(σ(balance >= 15000)(VF2)) (σ(branch = ‘Oviedo’)(VF1))]

COP 4710: Database Systems (DDBMS) Page 78 Mark Llewellyn ©

Semi Join Strategy
• In general, join operations are costly. This is especially true

in a distributed environment where shipping large join tables
around the network can be extremely costly.

• One technique that is commonly employed is the semi join
(See Chapter 4 notes, pages 14-15).

• In a semi join, only the joining attribute is sent from one site
to another, and then only the required rows are returned. If
only a small percentage of the rows participate in the join,
then the amount of data being transferred is minimized.

• R1 R2 ≡ π R1(R1 R2) (recall that R1 R2 ≠ R2 R1)

COP 4710: Database Systems (DDBMS) Page 79 Mark Llewellyn ©

Semi Join Strategy - Example
• Consider the following distributed database.

Site 1

Customer_num 10 bytes

Customer_name 50 bytes

Zipcode

SIC

10 bytes

5 bytes

Current instance
contains 10,000 rows

Site 2

Customer table Order table

Order_num 10 bytes

Customer_num 10 bytes

Order_Date

Order_amount

4 bytes

6 bytes

Current instance
contains 400,000 rows

COP 4710: Database Systems (DDBMS) Page 80 Mark Llewellyn ©

Semi Join Strategy – Example (cont.)

• Assume that a query originates at site 1 to display the
Customer_name, SIC, and Order_date for all customers in a
particular Zipcode range and an Order_amount above a specified
value.

• Further assume that 10% of the customers fall into the particular
zipcode range and 2% of the orders are above the specified value.

• Given these conditions, a semi join will work as follows:

– A query is executed at site 1 to create a list of the Customer_num
values in the desired Zipcode range. So, 1,000 rows satisfy the
zipcode condition (since 10% of 10,000 = 1000) and each of these
rows involves a 10-byte Customer_num field, so in total, 10,000
bytes will be sent from site 1 to site 2.

COP 4710: Database Systems (DDBMS) Page 81 Mark Llewellyn ©

Semi Join Strategy – Example (cont.)

– A query is executed at site 2 to create a list of the Customer_num and
Order_date values to be sent back to site 1 to compose the final result.
If we assume roughly the same number of orders for each customer,
then 40,000 rows of the order table will match with Customer_num
values sent from site1. Assuming that any order is equally likely to
be above the amount limit, then 800 rows (2% of 40,000) apply to
this query. This means that 11,200 bytes (14 bytes/row x 800 rows)
will be sent to site 1.

• The total amount of data transferred is only 21,200 bytes
using the semi join strategy.

• The total data transferred that would result from simply
sending the subset of each table needed to the other site
would be:

COP 4710: Database Systems (DDBMS) Page 82 Mark Llewellyn ©

Semi Join Strategy – Example (cont.)

– To send data from site 1 to site 2 requires sending the Customer_num,
Customer_name, and SIC: total of 65 bytes/row for 1000 rows of the
Customer table = 65,000 bytes from site 1 to site 2.

– To send data from site 2 to site 1 requires sending the Customer_num
and Order_date: total of 14 bytes for 8000 rows of the Order table =
112,000 bytes.

– The semi join strategy required only 21,200 bytes to be transferred.

